# **High Volume Pressure Sensor for Disposable Applications**

Freescale Semiconductor has developed a low cost, high volume, miniature pressure sensor package which is ideal as a sub-module component or a disposable unit. The unique concept of the Chip Pak allows great flexibility in system design while allowing an economic solution for the designer. This new chip carrier package uses Freescale Semiconductor's unique sensor die with its piezoresistive technology, along with the added feature of on-chip, thin-film temperature compensation and calibration.

**NOTE:** Freescale Semiconductor is also offering the Chip Pak package in application-specific configurations, which will have an "SPX" prefix, followed by a four-digit number, unique to the specific customer

#### **Features**

- · Low Cost
- Integrated Temperature Compensation and Calibration
- · Ratiometric to Supply Voltage
- Polysulfone Case Material (ISO 10993)
- · Provided in Easy-to-Use Tape and Reel

## MPX2300DT1 MPX2301DT1

Pressure Sensors 0 to 300 mmHg (0 to 40 kPa)

## **Application Examples**

- · Medical Diagnostics
- Infusion Pumps
- Blood Pressure Monitors
- Pressure Catheter Applications
- Patient Monitoring

| ORDERING INFORMATION |                 |                    |       |              |                |                   |
|----------------------|-----------------|--------------------|-------|--------------|----------------|-------------------|
| Device Name          | Package Options | Case Pressure Type |       |              | Device Marking |                   |
| Device Name          | Package Options | No.                | Gauge | Differential | Absolute       | Device Marking    |
| MPX2300DT1           | Tape and Reel   | 423A               |       | •            |                | Date Code, Lot ID |
| MPX2301DT1           | Tape and Reel   | 423A               |       | •            |                | Date Code, Lot ID |

#### **CHIP PAK PACKAGE**



MPX2300DT1/MPX2301DT1 CASE 423A-03

**NOTE:** The die and wire bonds are exposed on the front side of the Chip Pak (pressure is applied to the backside of the device). Front side die and wire protection must be provided in the customer's housing. Use caution when handling the devices during all processes.

#### **Table 1. Pin Numbers**

| Pin Number  | 1              | 2              | 3              | 4   |
|-------------|----------------|----------------|----------------|-----|
| Description | V <sub>s</sub> | S <sup>+</sup> | S <sup>-</sup> | GND |



#### **Pressure**

The MPX2300DT1/MPX2301DT1 Pressure Sensors have been designed for medical usage by combining the performance of Freescale's shear stress pressure sensor design and the use of biomedically approved materials. Materials with a proven history in medical situations have been chosen to provide a sensor that can be used with confidence in applications, such as invasive blood pressure monitoring. It can be sterilized using ethylene oxide. The portions of the pressure sensor that are required to be biomedically approved are the rigid housing and the gel coating.

The rigid housing is molded from a white, medical grade polysulfone that has passed extensive biological testing including: 10993-5:1999, 10993-10:2002, and 10993-11:1993.

A silicone dielectric gel covers the silicon piezoresistive sensing element. The gel is a nontoxic, nonallergenic elastomer system which meets all USP XX Biological Testing Class V requirements. The properties of the gel allow it to transmit pressure uniformly to the diaphragm surface, while isolating the internal electrical connections from the corrosive effects of fluids, such as saline solution. The gel provides electrical isolation sufficient to withstand defibrillation testing, as specified in the proposed Association for the Advancement of Medical Instrumentation (AAMI) Standard for blood pressure transducers. A biomedically approved opaque filler in the gel prevents bright operating room lights from affecting the performance of the sensor. The MPX2301DT1 is a reduced gel option.

## **Maximum Ratings**

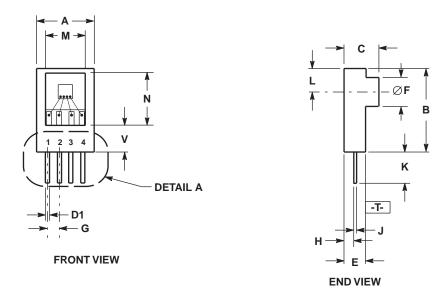
#### Table 2. Maximum Ratings<sup>(1)</sup>

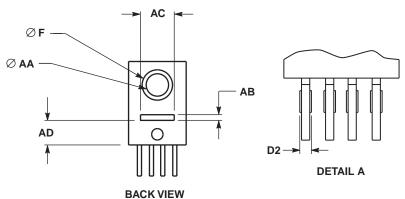
| Rating                      | Symbol           | Value      | Unit |
|-----------------------------|------------------|------------|------|
| Maximum Pressure (Backside) | P <sub>max</sub> | 125        | PSI  |
| Storage Temperature         | T <sub>stg</sub> | -25 to +85 | °C   |
| Operating Temperature       | T <sub>A</sub>   | +15 to +40 | °C   |

<sup>1.</sup> Exposure beyond the specified limits may cause permanent damage or degradation to the device.

## **Operating Characteristics**

Table 3. Operating Characteristics ( $V_S = 6 \text{ Vdc}$ ,  $T_A = 25^{\circ}\text{C}$  unless otherwise noted)


| Characteristics                                      | Symbol             | Min   | Тур   | Max   | Unit              |
|------------------------------------------------------|--------------------|-------|-------|-------|-------------------|
| Pressure Range                                       | P <sub>OP</sub>    | 0     | _     | 300   | mmHg              |
| Supply Voltage <sup>(1)</sup>                        | Vs                 | _     | 6.0   | 10    | Vdc               |
| Supply Current                                       | Io                 | _     | 1.0   | _     | mAdc              |
| Zero Pressure Offset                                 | V <sub>off</sub>   | -0.75 | _     | 0.75  | mV                |
| Sensitivity                                          | _                  | 4.95  | 5.0   | 5.05  | μV/V/mmHg         |
| Full Scale Span <sup>(2)</sup>                       | V <sub>FSS</sub>   | 2.976 | 3.006 | 3.036 | mV                |
| Linearity + Hysteresis <sup>(3)</sup>                | _                  | -1.5  | _     | 1.5   | %V <sub>FSS</sub> |
| Accuracy V <sub>S</sub> = 6 V, P = 101 to 200 mmHg   | _                  | -1.5  | _     | 1.5   | %                 |
| Accuracy V <sub>S</sub> = 6 V, P = 201 to 300 mmHg   | _                  | -3.0  | _     | 3.0   | %                 |
| Temperature Effect on Sensitivity                    | TCS                | -0.1  | _     | +0.1  | %/°C              |
| Temperature Effect on Full Scale Span <sup>(4)</sup> | TCV <sub>FSS</sub> | -0.1  | _     | +0.1  | %/°C              |
| Temperature Effect on Offset <sup>(5)</sup>          | TCV <sub>off</sub> | -9.0  | _     | +9.0  | μV/°C             |
| Input Impedance                                      | Z <sub>in</sub>    | 1800  | _     | 4500  | Ω                 |
| Output Impedance                                     | Z <sub>out</sub>   | 270   | _     | 330   | Ω                 |
| $R_{CAL} (150 \text{ k}\Omega)^{(6)}$                | R <sub>CAL</sub>   | 97    | 100   | 103   | mmHg              |
| Response Time <sup>(7)</sup><br>(10% to 90%)         | t <sub>R</sub>     | _     | 1.0   | _     | ms                |
| Temperature Error Band                               | _                  | 0     | _     | 85    | °C                |
| Stability <sup>(8)</sup>                             | _                  | _     | ±0.5  | _     | %V <sub>FSS</sub> |


Recommended voltage supply: 6 V ± 0.2 V, regulated. Sensor output is ratiometric to the voltage supply. Supply voltages above +10 V may induce additional error due to device self-heating.

- 3. Maximum deviation from end-point straight line fit at 0 and 200 mmHg.
- 4. Slope of end-point straight line fit to full scale span at 15°C and +40°C relative to +25°C.
- 5. Slope of end-point straight line fit to zero pressure offset at 15°C and +40°C relative to +25°C.
- 6. Offset measurement with respect to the measured sensitivity when a 150 k resistor is connected to V<sub>S</sub> and S+ output.
- 7. For a 0 to 300 mmHg pressure step change.
- 8. Stability is defined as the maximum difference in output at any pressure within  $P_{OP}$  and temperature within  $+10^{\circ}$ C to  $+85^{\circ}$ C after:
  - 1000 temperature cycles, -40°C to +125°C.
  - 1.5 million pressure cycles, 0 to 300 mmHg.

Measured at 6.0 Vdc excitation for 100 mmHg pressure differential. V<sub>FSS</sub> and FSS are like terms representing the algebraic difference between full scale output and zero pressure offset.

#### **PACKAGE DIMENSIONS**





NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  CONTROLLING DIMENSION: INCH.

|     | INCHES |       | MILLIMETERS |      |  |
|-----|--------|-------|-------------|------|--|
| DIM | MIN    | MAX   | MIN         | MAX  |  |
| Α   | 0.240  | 0.260 | 6.10        | 6.60 |  |
| В   | 0.350  | 0.370 | 8.89        | 9.40 |  |
| С   | 0.140  | 0.150 | 3.56        | 3.81 |  |
| D1  | 0.012  | 0.020 | 0.30        | 0.51 |  |
| D2  | 0.014  | 0.022 | 0.36        | 0.56 |  |
| Е   | 0.088  | 0.102 | 2.24        | 2.59 |  |
| F   | 0.123  | 0.128 | 3.12        | 3.25 |  |
| G   | 0.045  | 0.055 | 1.14        | 1.40 |  |
| Н   | 0.037  | 0.047 | 0.94        | 1.19 |  |
| J   | 0.007  | 0.011 | 0.18        | 0.28 |  |
| K   | 0.120  | 0.140 | 3.05        | 3.56 |  |
| L   | 0.095  | 0.105 | 2.41        | 2.67 |  |
| M   | 0.165  | 0.175 | 4.19        | 4.45 |  |
| N   | 0.223  | 0.239 | 5.66        | 6.07 |  |
| ٧   | 0.105  | 0.115 | 2.67        | 2.92 |  |
| AA  | 0.095  | 0.107 | 2.41        | 2.72 |  |
| AB  | 0.015  | 0.035 | 0.38        | 0.89 |  |
| AC  | 0.120  | 0.175 | 3.05        | 4.45 |  |
| AD  | 0.100  | 0.115 | 2.54        | 2.92 |  |

STYLE 1: PIN 1.  $V_{\infty}$  2. +OUT 3. -OUT 4. GROUND

**CASE 423A-03 ISSUE C CHIP PAK PACKAGE** 

## **Table 4. Revision History**

| Revision number | Revision<br>date | Description of changes                |  |
|-----------------|------------------|---------------------------------------|--|
| 9               | 10/2012          | Added Table 1. Pin Numbers on page 1. |  |

#### How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/salestermsandconditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Xtrinsic is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

